
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 1

Computer-aided software engineering

⊗ Software tool support for
software development

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 2

Objectives

⊗ To discuss general issues relating to CASE and
CASE technology

⊗ To suggest a classification for CASE systems

⊗ To discuss CASE tool integration

⊗ To describe the CASE life cycle

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 3

Topics covered

⊗ CASE classification

⊗ Integrated CASE

⊗ The CASE life cycle

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 4

CASE technology

⊗ Production-process support technology
• Tools to support development activities such as specification,

design, implementation, etc.

⊗ Process management technology
• Tools to support process modeling and management

⊗ Meta-CASE technology
• Generators used to produce CASE toolsets

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 5

Impact of CASE technology

⊗ CASE technology has resulted in significant
improvements in quality and productivity

⊗ However, the scale of these improvements is less
than was initially predicted by early technology
developers
• Many software development problems such as management

problems are not amenable to automation

• CASE systems are not integrated

• Adopters of CASE technology underestimated the training and
process adaptation costs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 6

CASE classification

⊗ CASE systems can be classified according to their
• Functionality - what functions do they provide

• Process support - what software process activities do they support

• The breadth of support which they provide

⊗ Classification allows tools to be assessed and
compared

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 7

Functional tool classes
Tool type Examples

Management tools PERT tools, Estimation tools
Editing tools Text editors, diagram editors, word

processors
Configuration management tools Version management systems, Change

management systems
Prototyping tools Very high-level languages,

user interface generators
Method-support tools Design editors, data dictionaries, code

generators
Language-processing tools Compilers, interpreters
Program analysis tools Cross reference generators, static

analysers, dynamic analysers
Testing tools Test data generators, file comparators
Debugging tools Interactive debugging systems
Documentation tools Page layout programs, image editors
Re-engineering tools Cross-reference systems, program re-

structuring systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 8

Activity-based tool classification

⊗ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 9

Quality of CASE support

Poor

Moderate

Good

Excellent

Quality of tool support

Requirements
definition

Function-
oriented
design

Object-oriented
design

Testing ManagementFormal
specification

Data
modelling

Programming Maintenance

Activity

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 10

Tools, workbenches, environments

Single-method
workbenches

General-purpose
workbenches

Multi-method
workbenches

Language-specific
workbenches

Programming TestingAnalysis and
design

Integrated
environments

Process-centred
environments

File
comparatorsCompilersEditors

EnvironmentsWorkbenchesTools

CASE
technology

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 11

Integrated CASE

⊗ While individual CASE tools are useful, more
leverage is obtained if tools can work together

⊗ Specialized tools can be combined to provide
wider support for process activities
• Integration of design workbench with a documentation

workbench

• Integration of specification, design and programming tools with a
configuration management workbench

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 12

Levels of integration

⊗ Platform integration
• Tools run on the same hardware/software platform

⊗ Data integration
• Tools operate using a shared data model

⊗ Presentation integration
• Tools offer a common user interface

⊗ Control integration
• Tools activate and control the operation of other tools

⊗ Process integration
• Tool use is guided by a defined process model

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 13

Platform integration

⊗ Tools and workbenches run on the same
hardware/software platform

⊗ UNIX or PC running MS Windows are the most
commonly used CASE platforms

⊗ Major problems are heterogeneous networks
• Different types of machine on the network

• Different operating systems installed on different machines

⊗ Lack of OS standards is a problem

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 14

Data integration

⊗ Shared files
• Tools communicate through a shared file format

⊗ Shared data structures
• Tools communicate through some internal representation of

a shared notation

⊗ Shared repository
• Tools are integrated around an OMS which includes a

public schema describing data entities and relationships

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 15

Shared files

⊗ Simple and straightforward approach to
integration

⊗ Most common form of data integration

⊗ Requires tools to share a file format or to include
translations from one file format to another

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 16

Point-to-point tool integration

Shared file

Conversion
filterTool 1 Tool 2

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 17

Shared data integration

⊗ Tools are tightly integrated around a shared data
structure. All tools are aware of the organization of
this structure

⊗ Hides the differences between individual tools -
user is presented with a seamlessly integrated
toolset

⊗ However, very difficult to add new tools or extend
the system in any way

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 18

Language-oriented toolset

⊗ Compiler for language translation

⊗ Static and dynamic program analyzers

⊗ Structure editing system where the program
editor includes knowledge of the program
syntax

⊗ Prettyprinters and cross-references

⊗ All share a common data structure

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 19

Integration through shared data

Code generatorLexical analyser
and parser

Dynamic
analyser

Symbol
table

Structure
editor

Interactive
debugger

PrettyprinterStatic
analyser

Cross-
referencer

Syntax
tree

used by

used by

used byused by

used by

used by

used by

updatescalls

calls

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 20

Repository integration

⊗ Flexible form of data integration

⊗ Tools access data through an object management
system whose schema is public. Tools read and
write data according to this schema

⊗ Disadvantages are:
• Tools have to be specially written for a specific repository to make

use of the schema

• Customer must buy the OMS as well as the CASE system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 21

Integration through an OMS

OMS schema

Tool 2Tool 1 Tool 3

Object management system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 22

Presentation integration

⊗ Window system integration
• Tools use the same underlying window system and present a

common interface for window manipulation commands

⊗ Command integration
• Tools use the same form of commands for comparable functions.

The menus are organized in the same way and similar icons are
used

⊗ Interaction integration
• The user interacts with graphical entities in the same way. The

same direct manipulation operations are used

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 23

Presentation guidelines

⊗ Presentation integration can be achieved by
defining a set of user interface guidelines which all
application developers follow
• Easy for window system integration

• Relatively straightforward for command integration. Both the
Macintosh and MS Windows have user interface designer’s
guidelines

• More difficult for interaction integration because of the range of
interaction possibilities

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 24

Control integration

⊗ Concerned with providing mechanisms for one
tool to control the activation of other tools

⊗ Tools should be able to start and stop other tools
and request particular services provided by other
tools

⊗ General approach based on message passing has
been adopted by a number of tool vendors
(Softbench, FUSE, ToolTalk)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 25

Integration through message passing

Tool 2Tool 1 Tool 3 Tool 4

Message Server

Control
interfaces

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 26

Tool communication

⊗ Tools exchange messages in a known format

⊗ Message passing is controlled by a message server

⊗ The message server accepts messages from a tool,
recognizes the destination and forwards it to that
tool (or tools)

⊗ System works in a distributed environments

⊗ Format of data to be exchanged is encoded in an
interface definition language (IDL)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 27

Process integration

⊗ The CASE system has embedded knowledge
about process activities, their phasing, constraints
and the tools used

⊗ An explicit model of the process must be defined
which is enacted by a process engine

⊗ The process should be guided rather than
prescribed by the process model

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 28

Process integration

Users

Process
interpreter

CASE
tools

Activities

Results

Process
model

generate

calls
advises

support carry out

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 29

Process model creation

⊗ Identify process activities.

⊗ Identify the deliverables or products of the
process.

⊗ Define activity coordination and activity
dependencies.

⊗ Allocate engineers to each activities.

⊗ Specify tool support for each activity.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 30

Process models

⊗ Software processes are complex and difficult to
model
• There is a high process programming cost

• Software engineers dynamically change the process to cope with
unexpected circumstances

• It is hard to specify cooperative working in current approaches to
process modeling

⊗ Process-driven CASE systems are mostly still
experimental systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 31

The CASE life cycle

⊗ Procurement

⊗ Tailoring

⊗ Introduction

⊗ Operation

⊗ Evolution

⊗ Obsolescence

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 32

A CASE life cycle model

CASE system
tailoring

CASE system
procurement

CASE system
introduction

CASE system
evolution

CASE system
operation

CASE system
obsolescence

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 33

CASE procurement

⊗ Existing company standards and methods
• The environment must support existing practice

⊗ Existing and future hardware
• The environment must be compatible with existing

hardware. It should run on industry-standard machines

⊗ The class of application to be developed
• The environment should support the principal type of

application developed by an organization

⊗ Security
• The environment should provide appropriate access control

facilities

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 34

CASE system tailoring

⊗ Installation
• Set system dependent hardware and software parameters

⊗ Process model definition
• Define the activities that the environment is to support

⊗ Tool integration
• Describe what tools are to be part of the environment and how

they are to be integrated

⊗ Documentation
• Provide appropriate, in-house documentation for using the

environment

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 35

CASE introduction and operation

⊗ May require changes to working practice
• User resistance because of conservatism or a feeling that

environments are for managers rather than engineers

• Lack of training. Organizations often don't invest enough in
training

• Management resistance. Managers may not see how the
environment will reduce project costs

⊗ Migrate projects slowly to the CASE system
• New projects should start with the environment after initial

pilot projects have demonstrated its advantages

• It is usually impractical to convert existing projects to the
CASE system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 36

CASE system evolution

⊗ As the system is used, new requirements arise
• Process requirements. Changes in the process model will

be identified

• Tool requirements. New tools will become available and will
have to be incorporated

• Data requirements. The data organization will evolve

⊗ An evolution budget must be available or the
environment will become progressively less
useful

⊗ Forward compatibility must be maintained

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 37

CASE system obsolescence

⊗ At some stage, an environment will outlive its
usefulness and will have to be replaced

⊗ Replacing an environment must be planned
and should take place over an extended time
period

⊗ Currently supported projects must be moved to
a new environment before their supporting
environment is scrapped

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 38

Key points

⊗ CASE involves providing automated tool support
for process activities

⊗ CASE technology may be classified by function,
process activity supported or by the range of tasks
supported

⊗ Tools support individual activities, workbenches
support sets of related activities, environments
support the whole process

⊗ There are several levels of CASE integration

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 25 Slide 39

Key points

⊗ Data integration can be implemented through
shared files, data structures or a repository

⊗ Process integration means that development is
guided by an explicit model of the software
process

⊗ The CASE life cycle involves procurement,
tailoring, introduction, operation, evolution and
obsolescence

⊗ CASE is expensive. 5-year cost > $50, 000

